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I.   INTRODUCTION 

Fractional calculus originated in 1695 and almost at the same time as traditional calculus. Fractional calculus is considered 

to be a useful tool for understanding and simulating many natural and artificial phenomena. It has developed rapidly in 

different scientific fields in the past few decades, including not only mathematics and physics, but also engineering, biology, 

economics and chemistry [1-13]. 

However, fractional calculus is different from traditional calculus. The definition of fractional derivative is not unique. 

Common definitions include Riemann-Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-

Letnikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional derivative [14-18]. Because Jumarie type of R-

L fractional derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to 

connect fractional calculus with traditional calculus. 

In this paper, we obtain the formulas of any order fractional derivative of two types of fractional analytic functions: 

                                                                               ( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 𝑐𝑜𝑠𝛼(𝑞𝑥
𝛼)].                                                         (1) 

And 

                                                                               ( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼)].                                                         (2) 

Where 0 < 𝛼 ≤ 1 , 𝑛  is any positive integer, 𝑝, 𝑞  are real numbers,  𝑝2 + 𝑞2 ≠ 0 . Jumarie’s modified R-L fractional 

derivative and a new multiplication of fractional analytic functions play important roles in this paper. In fact, our results are 

generalizations of traditional calculus results. 

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper and its properties. 

Definition 2.1 ([19]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                          ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼
𝑑𝑡

𝑥

𝑥0
 .                                                (3) 
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where Γ( )  is the gamma function. On the other hand, for any positive integer 𝑛 , we define ( 𝐷𝑥0 𝑥
𝛼)

𝑛
[𝑓(𝑥)] =

( 𝐷𝑥0 𝑥
𝛼)( 𝐷𝑥0 𝑥

𝛼) ∙∙∙ ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)], the 𝑛-th order 𝛼-fractional derivative of 𝑓(𝑥). 

Proposition 2.2 ([20]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)

𝛽] =
Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)

𝛽−𝛼,                                            (4) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                        (5) 

Next, the definition of fractional analytic function is introduced. 

Definition 2.3 ([21]): Suppose that 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all k, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 

𝑓𝛼: [𝑎, 𝑏] → 𝑅 can be expressed as an 𝛼-fractional power series, that is, 𝑓𝛼(𝑥
𝛼) = ∑

𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼∞
𝑘=0  on some open 

interval containing 𝑥0, then we say that 𝑓𝛼(𝑥
𝛼) is 𝛼-fractional analytic at 𝑥0. In addition, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on 

closed interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional 

analytic function on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([22]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥
𝛼)  and  𝑔𝛼(𝑥

𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                                                                   𝑓𝛼(𝑥
𝛼) = ∑

𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼∞
𝑘=0 ,                                                       (6) 

                                                                                  𝑔𝛼(𝑥
𝛼) = ∑

𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼∞
𝑘=0  .                                                      (7) 

Then we define 

                                                                         𝑓𝛼(𝑥
𝛼)⨂𝛼 𝑔𝛼(𝑥

𝛼)  

                                                                   = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼∞
𝑘=0 ⨂𝛼 ∑

𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼∞
𝑘=0   

                                                                   = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚
)𝑎𝑘−𝑚𝑏𝑚

𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)
𝑘𝛼 .                                              (8) 

Equivalently, 

                                                       𝑓𝛼(𝑥
𝛼)⨂𝛼 𝑔𝛼(𝑥

𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑘∞

𝑘=0 ⨂𝛼 ∑
𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑘∞

𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚
) 𝑎𝑘−𝑚𝑏𝑚

𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑘

 .                                                  (9) 

Definition 2.5 ([23]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥
𝛼),  𝑔𝛼(𝑥

𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥
𝛼) = ∑

𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑘∞

𝑘=0
∞
𝑘=0  ,                                (10) 

                                            𝑔𝛼(𝑥
𝛼) = ∑

𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)

𝑘𝛼 = ∑
𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑘

.∞
𝑘=0

∞
𝑘=0                                 (11) 

The compositions of 𝑓𝛼(𝑥
𝛼) and 𝑔𝛼(𝑥

𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥
𝛼) = 𝑓𝛼(𝑔𝛼(𝑥

𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥

𝛼))
⨂𝛼 𝑘∞

𝑘=0 ,                                             (12) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥
𝛼) = 𝑔𝛼(𝑓𝛼(𝑥

𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥

𝛼))
⨂𝛼 𝑘∞

𝑘=0 .                                              (13) 
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Definition 2.6 ([24]): If 0 < α ≤ 1, and 𝑥 is a real variable. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥
𝛼) = ∑

𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑘

.∞
𝑘=0

∞
𝑘=0                                              (14) 

On the other hand, the 𝛼-fractional cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑥
𝛼) = ∑

(−1)𝑘𝑥2𝑘𝛼

Γ(2𝑘𝛼+1)
= ∑

(−1)𝑘

(2𝑘)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑘∞
𝑘=0

∞
𝑘=0 ,                                      (15) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑥
𝛼) = ∑

(−1)𝑘𝑥(2𝑘+1)𝛼

Γ((2𝑘+1)𝛼+1)
= ∑

(−1)𝑘

(2𝑘+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑘+1)∞
𝑘=0

∞
𝑘=0  .                             (16) 

Definition 2.7 ([25]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥
𝛼), 𝑔𝛼(𝑥

𝛼) be two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥
𝛼))

⨂𝛼 𝑛
=

𝑓𝛼(𝑥
𝛼)⨂𝛼 ⋯⨂𝛼 𝑓𝛼(𝑥

𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥
𝛼). On the other hand, if 𝑓𝛼(𝑥

𝛼)⨂𝛼 𝑔𝛼(𝑥
𝛼) = 1, then 𝑔𝛼(𝑥

𝛼) is 

called the ⨂𝛼  reciprocal of 𝑓𝛼(𝑥
𝛼), and is denoted by (𝑓𝛼(𝑥

𝛼))
⨂𝛼 (−1)

. 

Definition 2.8: If the complex number 𝑧 = 𝑝 + 𝑖𝑞, where 𝑝, 𝑞 are real numbers, and 𝑖 = √−1. 𝑝, the real part of 𝑧, is 

denoted by Re(𝑧); 𝑞  the imaginary part of 𝑧, is denoted by Im(𝑧). 

III.   MAIN RESULTS AND EXAMPLES 

In this section, we obtain any order fractional derivative of two types of fractional analytic functions. On the other hand, 

some examples are given to illustrate our results. At first, we need a lemma. 

Lemma 3.1: If 𝑛 is any positive integer and 𝑝, 𝑞 are real numbers, 𝑝2 + 𝑞2 ≠ 0. Then 

                                                                   (𝑝 + 𝑖𝑞)𝑛 = (√𝑝2 + 𝑞2)
𝑛
∙ [𝑐𝑜𝑠(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃)].                                          (17) 

Where 𝜃 =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑞

𝑝
)   𝑖𝑓 𝑝 ≠ 0,

𝜋

2
       𝑖𝑓 𝑝 = 0, 𝑞 > 0,

−
𝜋

2
       𝑖𝑓 𝑝 = 0, 𝑞 < 0.

 

Proof                                                 (𝑝 + 𝑖𝑞)𝑛 

                                                      = (√𝑝2 + 𝑞2 ∙ (
𝑝

√𝑝2+𝑞2
+ 𝑖

𝑞

√𝑝2+𝑞2
))

𝑛

  

                                                      = (√𝑝2 + 𝑞2)
𝑛
∙ (

𝑝

√𝑝2+𝑞2
+ 𝑖

𝑞

√𝑝2+𝑞2
)
𝑛

  

                                                      = (√𝑝2 + 𝑞2)
𝑛

∙ (𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)𝑛 

                                                      = (√𝑝2 + 𝑞2)
𝑛
∙ [𝑐𝑜𝑠(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃)].                                                                Q.e.d. 

Theorem 3.2: Let 0 < 𝛼 ≤ 1, 𝑛 be any positive integer, 𝑝, 𝑞 be real numbers, 𝑝2 + 𝑞2 ≠ 0. Then 

   ( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 𝑐𝑜𝑠𝛼(𝑞𝑥
𝛼)] = (√𝑝2 + 𝑞2)

𝑛
∙ [𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 [𝑐𝑜𝑠(𝑛𝜃) ∙ 𝑐𝑜𝑠𝛼(𝑞𝑥
𝛼) − 𝑠𝑖𝑛(𝑛𝜃) ∙ 𝑠𝑖𝑛𝛼(𝑞𝑥

𝛼)]] .      

(18)                          

Where  𝜃 =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑞

𝑝
)   𝑖𝑓 𝑝 ≠ 0,

𝜋

2
       𝑖𝑓 𝑝 = 0, 𝑞 > 0,

−
𝜋

2
       𝑖𝑓 𝑝 = 0, 𝑞 < 0.
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Proof  By Lemma 3.1,  

                                   ( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 𝑐𝑜𝑠𝛼(𝑞𝑥
𝛼)] 

                               = ( 𝐷0 𝑥
𝛼)

𝑛
[Re(𝐸𝛼((𝑝 + 𝑖𝑞)𝑥

𝛼))] 

                               = Re (( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼((𝑝 + 𝑖𝑞)𝑥

𝛼)]) 

                               = Re((𝑝 + 𝑖𝑞)𝑛 ∙ 𝐸𝛼((𝑝 + 𝑖𝑞)𝑥
𝛼)) 

                               = Re ((√𝑝2 + 𝑞2)
𝑛

∙ [𝑐𝑜𝑠(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃)] ∙ 𝐸𝛼(𝑝𝑥
𝛼)⨂𝛼 [𝑐𝑜𝑠𝛼(𝑞𝑥

𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼)]) 

                               = (√𝑝2 + 𝑞2)
𝑛
∙ [𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 [𝑐𝑜𝑠(𝑛𝜃) ∙ 𝑐𝑜𝑠𝛼(𝑞𝑥
𝛼) − 𝑠𝑖𝑛(𝑛𝜃) ∙ 𝑠𝑖𝑛𝛼(𝑞𝑥

𝛼)]].                Q.e.d. 

Theorem 3.3: If 0 < 𝛼 ≤ 1, 𝑛 is any positive integer, 𝑝, 𝑞 are real numbers, 𝑝2 + 𝑞2 ≠ 0. Then 

   ( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼)] = (√𝑝2 + 𝑞2)

𝑛
∙ [𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 [𝑐𝑜𝑠(𝑛𝜃) ∙ 𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼) + 𝑠𝑖𝑛(𝑛𝜃) ∙ 𝑐𝑜𝑠𝛼(𝑞𝑥

𝛼)]] .      

(19)                          

Where 𝜃 =

{
 
 

 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑞

𝑝
)   𝑖𝑓 𝑝 ≠ 0,

𝜋

2
       𝑖𝑓 𝑝 = 0, 𝑞 > 0,

−
𝜋

2
       𝑖𝑓 𝑝 = 0, 𝑞 < 0.

 

Proof  Using Lemma 3.1 yields 

                                        ( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼)] 

                                    = ( 𝐷0 𝑥
𝛼)

𝑛
[Im(𝐸𝛼((𝑝 + 𝑖𝑞)𝑥

𝛼))] 

                                    = Im (( 𝐷0 𝑥
𝛼)

𝑛
[𝐸𝛼((𝑝 + 𝑖𝑞)𝑥

𝛼)]) 

                                    = Im((𝑝 + 𝑖𝑞)𝑛 ∙ 𝐸𝛼((𝑝 + 𝑖𝑞)𝑥
𝛼)) 

                                    = Im ((√𝑝2 + 𝑞2)
𝑛

∙ [𝑐𝑜𝑠(𝑛𝜃) + 𝑖𝑠𝑖𝑛(𝑛𝜃)] ∙ 𝐸𝛼(𝑝𝑥
𝛼)⨂𝛼 [𝑐𝑜𝑠𝛼(𝑞𝑥

𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼)]) 

                                    = (√𝑝2 + 𝑞2)
𝑛
∙ [𝐸𝛼(𝑝𝑥

𝛼)⨂𝛼 [𝑐𝑜𝑠(𝑛𝜃) ∙ 𝑠𝑖𝑛𝛼(𝑞𝑥
𝛼) + 𝑠𝑖𝑛(𝑛𝜃) ∙ 𝑐𝑜𝑠𝛼(𝑞𝑥

𝛼)]].                Q.e.d. 

Example 3.4: Suppose that 0 < 𝛼 ≤ 1, then 

             ( 𝐷0 𝑥
𝛼)

17
[𝐸𝛼(2𝑥

𝛼)⨂𝛼 𝑐𝑜𝑠𝛼(3𝑥
𝛼)] 

        = (√13)
17
∙ [𝐸𝛼(2𝑥

𝛼)⨂𝛼 [𝑐𝑜𝑠 (17 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (
3

2
)) ∙ 𝑐𝑜𝑠𝛼(3𝑥

𝛼) − 𝑠𝑖𝑛 (17 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (
3

2
)) ∙ 𝑠𝑖𝑛𝛼(3𝑥

𝛼)]].           (20) 

And 

             ( 𝐷0 𝑥
𝛼)

11
[𝐸𝛼(4𝑥

𝛼)⨂𝛼 𝑠𝑖𝑛𝛼(5𝑥
𝛼)] 

        = (√41)
11
∙ [𝐸𝛼(4𝑥

𝛼)⨂𝛼 [𝑐𝑜𝑠 (11 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (
5

4
)) ∙ 𝑠𝑖𝑛𝛼(5𝑥

𝛼) + 𝑠𝑖𝑛 (11 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛 (
5

4
)) ∙ 𝑐𝑜𝑠𝛼(5𝑥

𝛼)]].            (21) 

IV.   CONCLUSION 

In this paper, the formulas of any order fractional derivative of two types of fractional analytic functions are obtained. 

Jumarie’s modified R-L fractional derivative and a new multiplication of fractional analytic functions play important roles 

in this article. In fact, our results are generalizations of classical calculus results. In the future, we will continue to study the 

problems in engineering mathematics and fractional differential equations by using our methods. 
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